本篇文章给大家谈谈区块链中密码学原理,以及区块链的密码技术有什么算法对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
密码学是在区块链技术中承担着非常重要的角色区块链中密码学原理,但其实区块链中密码学原理,在互联网中,也大量的使用着密码学的技术,本文将介绍现代密码学中的早期加密方法,这将有助于我们理解区块链中的复杂算法。
第二次大战之后,从军方演化而来的互联网慢慢的进入了寻常百姓家,我们能够将一切事物都电子化处理,交易也不例外,于是电子银行也出现了,所有交易都可以通过网络进行。随着互联网用户越来越多,新的问题产生了,加密需要双方共享一个秘密的随机数,也就是秘钥,但从未谋面的两个人,如何就此共享密钥达成一致,而又不让第三方监听这知道呢?这将是现代密码学的目标。
1976年,维特菲尔德和马丁赫尔曼找到了一种巧妙的解决方法,让我们用颜色为比喻来讲解该技巧是如何实现的:
首先,明确我们的目标,发送者和接受者就秘密颜色达成一致,而不让窃听者知道,于是需要采用一种技巧,该技巧基于两点:
一、混合两种颜色得到第三种颜色很容易;
二、得到这种混合色后,想在此基础上知道原来的颜色就很难了, 这就是锁的原理。
朝一个方向容易,朝反方向难,这被称作是单向函数。解决方案是这样的,首先,区块链中密码学原理他们公开对某种颜色达成一致,假设是黄色,然后发送者和接收者随机选取私有颜色,混到公共的黄色中,从而掩饰掉区块链中密码学原理他们的私有颜色,并且将混合颜色发给接收者,接收者知道自己的私有颜色,并将它的混合颜色发给发送者,
然后就是技巧的关键了,发送者和接收者将各自私有颜色加入到另一个人的混合色中,然后得到一种共享秘密颜色,此时,窃听者无法确定这种颜色,她必须有一种私有颜色才能确定,技巧就是这样,对密码学的世界中, 我们需要一个数值的运算过程,这个过程向单一方向很容易,反方向会很难。
我们需要一种朝一方向易,反方向难的数值过程,于是密码学家找到了模算数,也就是取余的函数,(比如46除12的余数是10)。
假设我们考虑用质数做模型,比如17,我们找到17的一个原根,这里是3,它具有如下重要性质,取不同幂次时,结果会在时钟上均匀分布,3是一个生成元,取3的X次方,结果会等可能地出现在0和17中间任何整数上。
但相反的过程就难了,比如给定12,要求这是3的多少次方,这被称为离散对数问题,这样我们就有了单向函数,一个方向计算很容易,但反方向就很难了,已知12,我们只能采用试错法,求出匹配的质数。
这有多难呢?如果数字很小,这还很容易,但模数是长达数百位的质数,那么,想解密是不切实际的,即便借助世界上最强大的计算机,要遍历所有可能的情况,也需要上千年的时间,单向函数的强度取决于反向过程所需要的时间。
解决方案是这样的,首先,发送者和接收者公开质模数和生成元,这里的例子中也就是17和3,然后发送者选择一个私有的随机数,比如15,计算315 mod 17(结果为6),然后公开将此结果发送给接收者,之后接收者选择自己的私有随机数,比如13,计算313mod 17(结果为12),然后公开将此结果发送给对方。
关键在于,将接收者的公开结果,取她的私有数字次方,以获得共享密钥,这里是10,接收者将发送者的公开结果,取她的私有数字次方,结果得到相同的共享密钥,可能大家还不好理解,但他们实际上进行了相同的运算。
考虑发送者,她从接收者接收到的是12,来自313 mod 17,所以她的计算实际上是3∧13∧15 mod 17,而接收者,他从发送者那里接收6,来自315mod17,所以他的计算实际上是3∧15∧13mod17,两种计算结果是相同的,只是指数的顺序不同,调换指数顺序,结果不会改变,他们的结果都是,3取两人私有数字次幂,没有这些私有数字,15或13,第三方将无法求出结果。
第三方会被困在离散对数问题之中,数字足够大时,实践中,她在合理时限内,几乎不可能破解,这就解决了交换密钥的问题,这可以同伪随机数生成器结合使用,为从未谋面的人提供通信加密。
现在区块链常用的算法,如sha256,都是继承单向函数的设计思维,一个方向计算容易,反过来几乎不能破解,来保证安全。
区块链本质上是加密算法,基于哈希值256位算法原理,实现信息安全;现代信息的应用将越来越趋于全球化以及全民化,对于信息的安全除了防篡改、抗抵赖、可信等基础需求之外,更需要加强隐私方面的保护,区块链技术是因为现代密码学发展才产生的,现今应用的密码学是20年前的的密码学成果,因此要将区块链技术应用于更多参与场景,特别是应用于互联网经济等方面,现有的加密技术是否满足需求还需要更多的验证,需要更深入的整合密码学前沿技术,不断创新。
先放一张以太坊的架构图:
在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:
秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。
如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。
2、无法解决消息篡改。
如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。
1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。
2、同样存在无法确定消息来源的问题,和消息篡改的问题。
如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。
1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。
2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。
如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。
1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。
2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。
经两次非对称加密,性能问题比较严重。
基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:
当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。
在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。
无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。
在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。
为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。
在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。
为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:
在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。
以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?
那么如何生成随机的共享秘钥进行加密呢?
对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:
对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。
对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。
那么究竟应该采用何种加密呢?
主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。
密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。
在整个网络的传输过程中,根据密码套件主要分如下几大类算法:
秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。
消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。
批量加密算法:比如AES, 主要用于加密信息流。
伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。
在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。
握手/网络协商阶段:
在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等
身份认证阶段:
身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。
消息加密阶段:
消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。
消息身份认证阶段/防篡改阶段:
主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。
ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。
ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段 。
ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。
ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。
ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。
ECC 是 Elliptic Curve Cryptography的简称。那么什么是椭圆加密曲线呢?Wolfram MathWorld 给出了很标准的定义: 一条椭圆曲线就是一组被 定义的且满足 的点集。
这个先订条件是为了保证曲线不包含奇点。
所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:
所有的非对称加密的基本原理基本都是基于一个公式 K = k*G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式 不可进行逆运算( 也就是说G/K是无法计算的 )。
ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。
我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k*G计算出我们的公钥K。并且保证公钥K也要在曲线上。
那么k*G怎么计算呢?如何计算k*G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。
首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:
在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2*2 = 2+2,3*5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。
曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。
现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。
ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。
那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。
同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。
P+R+Q = 0, 故P+R = -Q , 如上图。
以上就描述了ECC曲线的世界里是如何进行加法运算的。
从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。
也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0
于是乎得到 2*P = -Q (是不是与我们非对称算法的公式 K = k*G 越来越近了)。
于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。
假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。
那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。
选一个随机数 k, 那么k * P等于多少呢?
我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111
由于2*P = -Q 所以 这样就计算出了k*P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。
至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:
我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?
ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:
在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。
签名过程:
生成随机数R, 计算出RG.
根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.
将消息M,RG,S发送给接收方。
签名验证过程:
接收到消息M, RG,S
根据消息计算出HASH值H
根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。
公式推论:
HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG
在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。
这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考 Alice And Bob 的例子。
Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。
生成秘钥阶段:
Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。
Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。
计算ECDH阶段:
Alice 利用计算公式 Q = ka * KB 计算出一个秘钥Q。
Bob 利用计算公式 Q' = kb * KA 计算出一个秘钥Q'。
共享秘钥验证:
Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'
故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。
在以太坊中,采用的ECIEC的加密套件中的其他内容:
1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。
2、签名算法采用的是 ECDSA
3、认证方式采用的是 H-MAC
4、ECC的参数体系采用了secp256k1, 其他参数体系 参考这里
H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:
在 以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。
首先,以太坊的UDP通信的结构如下:
其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。
其UDP的整个的加密,认证,签名模型如下:
区块链究竟是什么呢?本质上讲,区块链是一种分布式、去中心化的网络数据库系统, 这个系统会让数据的存储、更新、维护、操作变得不同。区块链有四项不可缺的核心技术, 分别是:分布式存储、共识机制、密码学原理、智能合约。
那么我们下面就讲一讲,与传统数据处理相比,区块链到底有什么不同,帮助大家了 解区块链是什么,让大家对区块链有一个总的认知。
一、区块链中的数据存储:块链式数据结构
在数据存储方面,区块链技术利用的是“块链式数据结构”来验证与存储数据的。
块链式结构是什么意思呢?铁链子大家都见过吧,一环套一环那种,那其实,每一环 我们可以看作是一个区块,很多环节扣在一起就形成了区块链。
这个所谓的“铁链”是如何存储数据的呢?简单来讲,区块链和普通存储数据的不同 之处在于:在区块链上,后一个区块里的数据是包含前一个区块里的数据的。
以读书为例:我们平时看书,看完第 1 页,接着读第 2 页、第 3 页......
那在区块链里面呢,如果给每个区块标注上页码,那么第 2 页的内容是包含第 1 页的 内容的,第 3 页的内容包含第 1 页和第 2 页的内容......第 10 页包含了前 9 页的内容, 就是这样一个层层嵌套的链条,这样一来,就可以追溯到最本源的数据了,这就是区块链 的可追溯性。
区块链这种“块链式数据结构”使之具备可追溯性,这就天然适用于许多领域,譬如: 食品溯源、药品溯源等等。这样一来,毒奶粉、假疫苗、伪劣食品事件出现的概率就会大 大降低,因为一旦出现问题,通过溯源可以清晰知道到底是哪个环节出现问题,问责追偿 将会更加清晰。
二、区块链中的数据更新:分布式节点共识算法
在数据更新方面,区块链技术是利用“分布式节点共识算法”来生成和更新数据。
每每生成新的区块(也就是更新数据的时候),都需要通过一种算法,获得全网 51% 以上节点的认可才能构成新的区块。说白了就是投票,超过半数人同意就可以生成,这就 使得区块链上的数据不容篡改。
为什么这么说呢?我们还是打一个比喻:我们把区块链比作一个账本,因为都是记录 数据的嘛,传统世界里,记账权力在于记账先生,账本属于记账先生一个人的。那么在区 块链里面,每一个人都拥有这个账本,想要更新账目呢,就要投票,半数人以上赞成才可 以去更新账目数据。
在这个过程中,我们会涉及到这么几个名词:分布式、节点、共识算法,这几个名词 其实非常好理解:
每个人都记账(也就是人人拥有账本,账本分散在每个人手里),就是所谓的“分布 式”;
大家讨论、投票产生的、一致赞同的记账办法,就是所谓的“共识算法”;
每一个参与记账的人,就是所谓的“节点”。
三、 区块链中的数据维护:密码学
在数据维护阶段,区块链的不同之处就在于:它利用密码学的方式来保证数据传输和 访问的安全。
区块链中所应用的密码学原理主要有:哈希算法、Merkle 哈希树、椭圆曲线算法、 Base58。这些原理,其实都是通过一系列复杂的运算以及换算,来保证区块链上数据安全。
四、 区块链中的数据操作:智能合约
智能合约,是由计算机程序定义并自动执行的承诺协议,说白了,就是用代码执行的 一套交易准则,类似于现在的信用卡自动还款功能,开启这个功能,你自己什么都不用管, 到期银行会自动扣除你欠的钱。
智能合约的突出优势就是,很大程度上避免了由信任产生的一系列问题。
我们很多人,都遇到过被借钱的事情:朋友手头紧了跟你借 2000 块钱,承诺下个月 发了工资还钱,到了下个月他又找别的借口不还,拖来托去这事儿就没谱了。本来没多少 钱,还是朋友,虽然你很郁闷,这事也就算了。
那么,有了智能合约以后,他就不能赖账了,因为在智能合约上,一旦触发合约中的 条款,代码就会自动执行,不管他愿不愿意,只要他发了工资、账户上有了钱,他就得还 你。
总结一下本节内容,区块链中有四项不可缺的核心技术,分别是:分布式存储、共识 机制、密码学原理、智能合约。
我们可以这样理解:分布式存储对应的是数据存储这个阶段,共识机制对应的是数据 的处理更新这个阶段,密码学对应的是数据安全,智能合约对应的是数据的操作问题。
这是加入公Ulord深度学习第四课区块链中密码学原理,杨博士给大家主讲区块链中区块链中密码学原理的密码学问题区块链中密码学原理,本期课程令让区块链中密码学原理我弄懂区块链中密码学原理了一个一直困扰着我的关于公钥和私钥的问题,他们之间到底是什么关系?再这次学习中我得到了答案,现在我把我学习到的内容跟大家分享一下。
区块链里的公钥和私钥,是非对称加密里的两个基本概念。
公钥与私钥,是通过一种算法得到的一个密钥对,公钥是密钥对中公开的部分,私钥是非公开的部分。公钥通常用于加密会话,就是消息或者说信息,同时,也可以来用于验证用私钥签名的数字签名。
私钥可以用来进行签名,用对应的公钥来进行验证。通过这种公开密钥体制得到的密钥对能够保证在全世界范围内是唯一的。使用这个密钥对的时候,如果用其中一个密钥加密数据,则必须用它对应的另一个密钥来进行解密。
比如说用公钥加密的数据就必须用私钥才能解密,如果用私钥进行加密,就必须要对应的公钥才能解密,否则无法成功解密。另外,在比特币的区块链中,则是通过私钥来计算出公钥,通过公钥来计算出地址,而这个过程是不可逆的。
关于区块链中密码学原理和区块链的密码技术有什么算法的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
评论