今天给各位分享区块链用哪种网络技术的知识,其中也会对区块链用什么技术开发进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术区块链用哪种网络技术的新型应用模式。区块链(Blockchain)区块链用哪种网络技术,是比特币区块链用哪种网络技术的一个重要概念区块链用哪种网络技术,它本质上是一个去中心化的数据库。
同时作为比特币的底层技术,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。
区块链是一个公开的数据列表,其中的每一份记录被称作一个区块。这些区块像链条一样连成一串,形成了区块链。就像成语接龙一样,相邻的词语之间必然存在某种联系才能形成词语链条。区块链也是如此,只不过区块与区块之间的联系要复杂得多。
/iknow-pic.cdn.bcebos.com/35a85edf8db1cb13eb25e778d254564e92584b09"target="_blank"title="点击查看大图"class="0b35-e736-b944-380e ikqb_img_alink"/iknow-pic.cdn.bcebos.com/35a85edf8db1cb13eb25e778d254564e92584b09?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/
扩展资料
区块链技术创新不等于炒作虚拟货币,应防止那种利用区块链发行虚拟货币、炒作空气币等行为。同时还要看到,区块链目前尚处于早期发展阶段,在安全、标准、监管等方面都需要进一步发展完善。
大方向没有错,但是要避免一哄而上、重复建设,能够在有序竞争中打开区块链的想象空间。中国在区块链领域拥有良好基础,一些大型互联网公司早有布局,人才储备相对充足,应用场景比较丰富,完全有条件在这个新赛道取得领先地位。
从更大的视野来看,人类能够发展出文明,是因为实现了大规模人群之间的有效合作。亚当·斯密所阐释的“看不见的手”,也是通过市场机制实现了人类社会的分工协作。
由此观之,区块链极大拓展了人类信任协作的广度和深度。也许,区块链不只是下一代互联网技术,更是下一代合作机制和组织形式。
参考资料来源区块链用哪种网络技术:/baike.baidu.com/item/%E5%8C%BA%E5%9D%97%E9%93%BE/13465666?fr=aladdin"target="_blank"title="百度百科-区块链"百度百科-区块链
本文试图对区块链有关技术流派和主流平台进行一个概览,作为学习区块链技术体系的导览,意在抛砖引玉,促进区块链开发社区的讨论与共识。区块链技术的流派未战先谋局,你想投入区块链开发这个领域,至少先要搞清楚现在有哪些玩家,各自的主张和实力如何。划分区块链技术流派并无一定之规,据我所见,或可有以下四种方式:第一是按照节点准入规则,划分为公有链、私有链和联盟链。公有链的代表自然是比特币和以太坊,私有链则以R3 Corda声名最盛,联盟链的代表作品是Hyperledger名下的Fabric。公有链注重匿名性与去中心化,而私有链及联盟链注重高效率,而且还往往设置了准入门槛。公有链、私有链与联盟链之间的这些不同都在技术中有所体现,比如私有链和联盟链假设节点数目不大,可以采用PBFT算法来形成共识。而公有链假设有大量且不断动态变化的节点网络,用PBFT效率太低,只能采用类似抽彩票的算法来确定意见领袖。这就意味着,私有链与联盟链很难变成公有链,而用公有链来作联盟链或私有链虽然容易,却也并非即插即用。此种差异,学者不可不察。第二是按照共享目标,划分为共享账本和共享状态机两派。比特币是典型的共享账本,而Chain和BigchainDB也应属此类,这几个区块链系统在各个节点之间共享一本总账,因此对接金融应用比较方便。另一大类区块链系统中,各个节点所共享的是可完成图灵完备计算的状态机,如以太坊、Fabric,它们都通过执行智能合约而改变共享状态机状态,进而达成种种复杂功能。第三是按照梅兰妮· 斯旺所描述的代际演进,将区块链系统分为1.0、2.0和3.0三代。其中1.0支撑去中心化交易和支付系统,2.0通过智能合约支撑行业应用,3.0支撑去中心化的社会体系。比特币和Chain应属于区块链1.0系统,而以太坊和Fabric是区块链2.0系统,目前尚无成功的区块链3.0系统出现,不成功的尝试倒是有那么一个,就是著名的The DAO。第四是按照核心数据结构,分为区块链和分布式总账两派。区块链这一派在系统中真的实现了一个区块的链作为核心数据结构,而分布式总账这一派,只是吸取了区块链的精神,并没有真用一条区块链作为核心数据结构,或者虽然暂时用了,但声明说吾项庄舞区块链,意在分布式总账耳,若假以时日,因缘际会,未尝不可取而代之也。主流区块链技术平台了解流派划分,仍是只能用来指点江山,吹牛论道,要动手,总要有个切入点。区块链货币据说已经有上千个了,但值得关注的技术平台大概只有数十个,而如果要进入区块链开发领域,打下一个好基础,练出一身好功夫,捞到几个好offer,则值得深入研究学习的平台,屈指可数。首先当然是比特币。比特币作为区块链的第一个也是目前为止最成功、最重要的样板工程,已经上线运行了八年多,本身没有发生任何严重的安全和运维事故,其稳定与强悍堪称当代软件系统典范。比特币Bitcoin Core是一个代码质量高、文档良好的开源软件,从学习区块链原理、掌握核心技术的角度来说,Bitcoin Core是最佳切入点,能够学到原汁原味的区块链技术。当然,Bitcoin Core是用C++写的,而且用了一些C++11和Boost库的机制,对学习者的C++水平提出了较高的要求。学习比特币平台开发还有一个优势,就是可以对接繁荣的比特币技术社区。目前围绕比特币进行改进和提升的人很多,人多力量就大,诸如隔离验证、闪电网络、侧链等比较新的想法和技术,都率先在比特币社区里落地。比如侧链技术的主要领导者Blockstream是由密码学货币元老Adam Back领衔的,而Blockstream是Bitcoin Core最大的贡献者之一,所以一些有关侧链的技术在比特币社区里讨论最充分。但比特币作为一个典型的区块链1.0系统,是不是支撑其他类型区块链应用的最佳技术平台,存在很大的争议。另外,也不是所有人都有能力和必要精通区块链底层技术。所以对那些急于冲到区块链领域里做(quān)事(qián)的人来说,可能更直截了当的学习目标是以太坊和Hyperledger Fabric。在以太坊上面用Solidity进行的智能合约开发是切入区块链开发最简单的方式,没有之一。以太坊的理想非常宏大,由于配备了强大的图灵完备的智能合约虚拟机,因此可以成为一切区块链项目的母平台,是驮住整个区块链世界的大乌龟。在以太坊上开发一个类似比特币的加密货币,是一个不折不扣的小目标。一般有经验的开发者在文档指导下,半天到一天即可入门。问题在于,入门以后又如何?靠写Solidity是否就可以包打天下?这是大大存疑的。我们也可以反过来说,如果以太坊+Solidity是区块链的终极解决方案,那么怎么还会出现那么多区块链技术门派呢?特别是,以太坊似乎并没有给现实世界中巨型的中心化组织们留下一条活路,这种彻底不妥协的革命态度有可能也成为以太坊推广的障碍。当前以太坊项目的开发进展并不顺利。一个比较突出的问题是项目过多,力量分散,导致项目质量参差不齐。但尽管如此,跟其他区块链2.0平台相比,以太坊提供的开发环境是最简单最完善的。初学区块链的人绝对有必要学习以太坊,从而对区块链和智能合约建立起一个最“正宗”的认识。主流区块链技术平台的第三支就是Fabric,它是Hyperledger的第一个也是最知名的孵化项目。 Fabric最早来自IBM的Open Blockchain项目,到2015年11月,IBM将当时已经开发完成的44,000行Go语言代码交给Linux基金会,并入Hyperledger项目之中。在2016年3月一次黑客马拉松中,Blockstream和DAH两家公司将各自的代码并入Open Blockchain,随后改名为Fabric。到目前为止,Fabric与Intel提供的Sawtooth Lake并列为Hyperledger的一级孵化项目,但前者得到的关注远超后者。从技术角度来说,Fabric思路不错,重点是满足企业商用的需求,比如解决交易量问题。众所周知,比特币最大的短板是它每秒钟7个交易的上限,完全无法满足现实需要。而Fabric目标是实现每秒钟10万交易,这个量接近刚刚过去的双十一交易量瞬时峰值,完全可以满足正常条件下的行业级应用。Fabric用Go语言开发,也提供多种语言的API。特别值得一提的是,Fabric比较充分地运用了容器技术,比如其智能合约就运行在容器当中。这也是Go语言带给Fabric的一项福利,因为Go语言静态编译部署的特征很适合开发容器中的程序。Fabric还有一些特点,比如其membership服务可以设置节点准入审查,这是典型的联盟链特征。再比如其共识算法是可定制的。Fabric的短板是体系较为复杂,虽有文档,但缺少经验的开发者学习起来障碍比较大。然而由于其定位清楚,迎合了不少企业的心态,所以已经有多家机构在基于Fabric秘密研发行业内的联盟链项目。
区块链要什么技术开发:
一、区块链理论:区块链开发者要对区块链的理论知识具备熟悉的掌握能力,这是作为一名区块链开发者最基本的要求。在里面的内容包括了区块链网络架构、去中心化等相关应用技术。拓展技术理论是对以太坊开发的掌握。
二、智能合约:智能合约是需要区块链开发者用区块链编程语言写出来的一串代码,根据不同场景构思逻辑后开发出来的信任机制,旨在消除第三方的介入,创造出高效、高信任的区块链网络。区块链开发者要实现这串代码自动执行,且是不可逆的操作效果。
三、密码学:区块链应用场景很多都是具备高加密性的,点对点的加密模式是密码学的特点。区块链开发者通过研究密码学,了解到钱包、密钥、广泛的加密和解密技术等加密概念
四、分布式架构:区块链开发人者必须懂得分布式架构和网络的功能。去中心化网络是区块链架构的基础,在区块链网络中信息的传递要遵循去中心化的方式,这样每个人才能享受到同等的网络权益。
点对点网络是区块链中核心的技术之一,主要关注的方面是为区块链提供一个稳定的网络结构,用于广播未被打包的交易(交易池中的交易)以及共识过的区块,部分共识算法也需要点对点的网络支撑(如PBFT),另外一个辅助功能,如以太坊的消息网络,也需要点对点网络的支持。
P2P网络分为结构化和非结构化网络两类。结构化网络采用类似DHT算法来构建网络结构区块链用哪种网络技术;非结构化网络是一种扁平的网络,每个节点都有一些邻居节点的地址。
点对点网络的主要职责有维护网络结构和发送信息这两个方面。网络结构要关注的是新节点的加入和网络更新这两个方面,而发送信息包括广播和单播两个方面
如何建立并维护点对点的整个网络?节点如何加入、退出?
网络结构的建立有两个核心的参数,一个是每个节点向外连接的节点数,第二个是最大转发数。
新节点对于整个网络一无所知,要么通过一个中心的服务获取网络中的一些节点去连接,要么去连接网络中的“种子”节点。
网络更新处理当有新节点加入或者节点退出,甚至原来一些节点网络不好,无法连接,过一段时间又活区块链用哪种网络技术了,等等这些情况。一般通过节点已有的连接来广播这些路由表的变化。需要注意的是,因为点对点网络的特殊性,每个节点的路由表是不一样的(也叫partial view)
广播一般采用泛洪协议,即收到转发方式,使的消息在网络中扩散,一般要采用一些限制条件,比如一条消息要设置最大的转发数,避免网络的过渡负载。
单播需要结构化网络结构支持,一般是DHT,类似于DNS解析的方式,逐跳寻找目标节点地址,之后进行传输,并且更新本地路由表。
要想快速检索信息,有两种数据结构可以使用,一种是树类型,如AVL树、红黑树、B树等;另外一类是hash表。
哈希表的效率比树更高,但是需要占用更多的内存。
信息的表示采用键值对的方式,即一个键对应一个值,区块链用哪种网络技术我们要查找的是key,值是附着的信息。
哈希表要解决的问题是如何均匀地为每一个key分配一个存储位置。
这里面有两个重点:1.是为key分配一个存储地点,这个分配算法是固定的,保证存储的时候和查找的时候使用同一个算法,不然存进去之后会找不到;2.是均匀地分配,不能有点地方存放数据多,有点放存放数据少。
一般语言里面的hashtable、map等结构使用这个技术来实现,哈希函数可以直接使用取模函数,key%n,这种方式,n代表有多少个地方,key是整数,如果key是其他类型,需要先进行一次哈希,将key转为整数。这种方式可以解决上面的两个需求,但是当n不够大的时候(小于要存储的数据),会产生冲突,一个地方一定会有两个key要存储,这时候,需要在这个地方放一个链表,将分配到同一地点、不同key,顺序摆放。当一个地点放的key太多后,链表的查找速度太慢,要转化为树类型结构(红黑树或者AVL树)。
上面说过,哈希表效率很高,但是占用内容,使用多台机器就可以解决这个限制。在分布式环境中,可以将上述的地点理解为计算机(后面成为节点),即如何将一个key映射到一个节点上,每个节点有一个节点ID,即key-node id的映射,这个映射算法也要固定。
这个算法还有一个非常重要的要求,即scalebility,当新节点加入和退出时候,需要迁移的key要尽量少。
这个映射算法有两种典型结构,一个是环形,一个是树形;环形的叫一致性哈希算法,树形的典型叫kademlia算法。
选点算法就是解决key-node id的映射算法,形象的来说就是为一个key选择它生命中的她(节点)。
假设我们使用32哈希,那么总共能容纳的key的数据量是2**32,称之为hash空间,把节点的ID映射成整数,key也映射成整数。把key哈希和节点哈希值接的差值的叫做距离(负数的话要取模,不用绝对值),比如一个key的哈希是100(整数表示),一个节点的哈希是105,则这两个的距离是105-100=5。当然使用其他距离表示也可以,比如反过来减,但是算法要固定。我们把key映射(放到)距离他最近的节点上。距离取模的话,看起来就是把节点和key放到一个环上,key归属到从顺时针角度离它最近的节点上。
kademlia算法的距离采用的是key哈希与节点哈希异或计算之后的数值来表示(整数),从左往右,拥有越多的“相同前缀”,则距离越近,越在左边位置不一样,距离越远。
树结构的体现是,将节点和key看成树的节点,这个算法支持的位数是160bit,即20个8字节,树的高度为160,每个边表示一位。
选点的算法和一致性哈希相同,从所有节点中,选择一个距离key距离最小的节点作为这个key的归宿。
由于是在分布式环境中,为了保证高可用,我们假设没有一个中心的路由表,没有这个可以看到全貌的路由表,带来了一些挑战,比如如何发现节点、查找节点?
在P2P网络中,常用的方法是每个节点维护一个部分路由表,即只包含部分节点的路由信息。在泛洪算法中,这些节点上随机的;在DHT算法中,这个路由表是有结构的,维护的节点也是有选择性的。那么如何合理的选择需要维护路由信息的节点呢?
一个朴素的做法是,每一个节点保存比他大的节点的信息,这样可以组成一个环,但是这样做的话,有一个大问题和一个小问题。大问题是,每个节点知道的信息太少(只有下一个节点的哈希和地址),当给出一个key时,它不知道网络中还有没有比它距离这个key距离还短的节点,所以它首先判断key是否属于自己和下一个节点,如果是,那么这个key就属于下一个节点,如果不是就调用下一个节点同样的方法,这个复杂度是N(节点数)。一个优化的方法是,每个节点i维护的其他节点有:i+2 1, i+2 2,....i+2**31,通过观察这个数据,发现由近到远,节点越来越稀疏。这样可以把复杂度降低到lgN
每个节点保存的其他节点的信息,包括,从左到右,每一位上与本节点不同的节点,最多选择k个(算法的超参数)。比如在节点00110上(为演示起见,选择5位),在要保存的节点路由信息是:
1****: xxx,....,xxx(k个)
01 : xxx,....,xxx(k个)
000 : xxx,....,xxx(k个)
0010 : xxx,....,xxx(k个)
00111: xxx,....,xxx(k个)
以上为一行称为k-bucket。形象的来看,也是距离自己越近,节点越密集,越远,节点越稀疏。这个路由查找、节点查找的算法也是lgN复杂度。
关于区块链用哪种网络技术和区块链用什么技术开发的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
评论