本篇文章主要给网友们分享区块链安全保护协议书的知识,其中更加会对区块链技术安全框架进行更多的解释,如果能碰巧解决你现在面临的问题,记得关注本站!
电子合同本身就是一种电子数据区块链安全保护协议书,具有易篡改与易删除等安全缺陷区块链安全保护协议书,不利于该服务区块链安全保护协议书的长期发展。为区块链安全保护协议书了保证用户在电子合同平台上签署区块链安全保护协议书的电子文件与电子合同的法律效力,需要对电子合同签署的全过程进行存证。
在根据区块链存证技术实现的“法链”应用中,平台将对电子合同签署的关键环节进行存档,并将关键信息与数据分布存储到整个区块链当中,从而实现电子合同的全流程存证。
深究其实现原理,区块链通过深度使用密码学算法、特别设计的数据结构和多方参与的共识算法,由机器算法来解决多方交易记录的一致性、可靠存储和防篡改问题,与电子数据存证有着天然的强关联。
首先,电子合同签约记录存储在由多方共同维护的共享账本上,不可篡改,不可抵赖,当然也不会丢失。
其次,电子合同文本、电子合同要素加密存储,包括电子合同参与人也采取加密存储,只有参与人才可以解密查看,在数据上保护签约方隐私。
再次,机器按照预定义的规则(智能合约)严格执行,不再仅靠与第三方一纸协议保证。基于区块链的KYC服务自动检查验证证书有效性和身份,在保证隐私的基础上确保参与人身份有效真实。
目前,我们的电子合同平台上所签的电子合同都通过区块链技术实现了电子文件数字指纹的分布式存证,进一步强化了平台电子合同的法律效力。
区块链本身解决区块链安全保护协议书的就是陌生人之间大规模协作问题区块链安全保护协议书,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?
实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。
基础课程第七课 区块链安全基础知识
一、哈希算法(Hash算法)
哈希函数(Hash),又称为散列函数。哈希函数区块链安全保护协议书:Hash(原始信息) = 摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。
一个好的哈希算法具备以下4个特点:
1、 一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。
2、 输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。
3、 易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。
4、 不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。
5、 冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。
举例说明:
Hash(张三借给李四10万,借期6个月) = 123456789012
账本上记录了123456789012这样一条记录。
可以看出哈希函数有4个作用:
简化信息
很好理解,哈希后的信息变短了。
标识信息
可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。
隐匿信息
账本是123456789012这样一条记录,原始信息被隐匿。
验证信息
假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息
Hash(张三借给李四5万,借期6个月)=987654321098
987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。
常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(Secure Hash Algorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。
MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。
哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。
二、加解密算法
加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。
对称加密算法(symmetric cryptography,又称公共密钥加密,common-key cryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。
非对称加密算法(asymmetric cryptography,又称公钥加密,public-key cryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。 对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。
三、信息摘要和数字签名
顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。
数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。
我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都可以通过我们上面的非对称加密算法来实现数字签名。
在实践中,我们一般都是对信息的哈希值进行签名,而不是对信息本身进行签名,这是由非对称加密算法的效率所决定的。相对应于区块链中,则是对哈希指针进行签名,如果用这种方式,前面的是整个结构,而非仅仅哈希指针本身。
四 、零知识证明(Zero Knowledge proof)
零知识证明是指证明者在不向验证者提供任何额外信息的前提下,使验证者相信某个论断是正确的。
零知识证明一般满足三个条件:
1、 完整性(Complteness):真实的证明可以让验证者成功验证;
2、 可靠性(Soundness):虚假的证明无法让验证者通过验证;
3、 零知识(Zero-Knowledge):如果得到证明,无法从证明过程中获知证明信息之外的任何信息。
五、量子密码学(Quantum cryptography)
随着量子计算和量子通信的研究受到越来越多的关注,未来量子密码学将对密码学信息安全产生巨大冲击。
量子计算的核心原理就是利用量子比特可以同时处于多个相干叠加态,理论上可以通过少量量子比特来表达大量信息,同时进行处理,大大提高计算速度。
这样的话,目前的大量加密算法,从理论上来说都是不可靠的,是可被破解的,那么使得加密算法不得不升级换代,否则就会被量子计算所攻破。
众所周知,量子计算现在还仅停留在理论阶段,距离大规模商用还有较远的距离。不过新一代的加密算法,都要考虑到这种情况存在的可能性。
中国商业联合发布区域链电子合同流程规范区块链安全保护协议书,这个合同规范是一个有蚂蚁链所牵头的合同规范。目的是在区域链电子合同当中规定好相映的合同签收流程区块链安全保护协议书,并且能够对相应的合同内容以及格式进行规范。众所周知,当发生交易行为的时候,合同是并不可少的。区块链安全保护协议书我们在日常生活当中对于合同的运用是非常常见的,合同的签署方式并不需要完全书面的方式。对于许多合同而言,口头上的合同也是存在的。也正是如此,在中国商业联合会当中所发布的区域链电子合同规范当中,为区域链的电子合同流程,内容,格式等相关的要素进行了规范,使得该领域当中的合同签约能够得到更好的保障。
在该合同规范当中提出了四大原则。分别是合同有效,工程可溯,安全可信以及不可篡改。这四项规定对于合同的保障是非常大的。通过对合同效力以及相关流程格式的约束,能够更好的规范行业中对于交易方面的行为。区块链安全保护协议书我国在《合同法》当中已经对各项合同有着明确的规定,对于相关板块的合同规定,利用有关部门的合同流程规范能够更好的将合同相关效率达到最大化。因此,无论是在区域链的电子合同领域还是在其区块链安全保护协议书他领域,对于合同的要求都是有相应的法律条文束缚。
对于许多新兴的产业而言,相应的规范仍然未能够在该产业当中取得较为广泛的运用。所以对于这些规范应当及时的推广,并且对该领域当中的行业采取强制性的措施。规范能够更好的为该领域创造更为有利的条件。
对于不同领域而言,规范的意义都是希望能够更好的维护该领域的秩序,从而保障在该领域当中各企业的利益。
区块链技术是一种分布式记录技术区块链安全保护协议书,它通过对数据进行加密和分布式存储区块链安全保护协议书,来保证数据的安全性和可靠性。
主要通过以下几种方式来保证区块链的安全性区块链安全保护协议书:
1.加密技术:区块链采用的是对称加密和非对称加密算法区块链安全保护协议书,可以有效保护数据的安全。
2.分布式存储:区块链的数据不是集中存储在单一节点上,而是分散存储在网络中的各个节点上,这有效防止了数据的篡改和丢失。
3.共识机制:区块链通常采用共识机制来确认交易的合法性,这有助于防止恶意交易的发生。
4.合约机制:区块链可以通过智能合约来自动执行交易,这有助于防止操纵交易的发生。
区块链技术在实现安全性的同时,也带来了一些挑战。例如,区块链的安全性可能受到漏洞的攻击,或者因为私钥泄露而导致资产被盗。因此,在使用区块链技术时,还需要注意身份认证、密码安全等方面的问题,以确保区块链的安全性。
此外,区块链技术的安全性也可能受到政策、法规等方面的影响。例如,在某些国家和地区,区块链技术可能会受到审查和限制,这也可能会对区块链的安全性产生影响。
总的来说,区块链技术的安全性主要通过加密技术、分布式存储、共识机制和合约机制等方式来保证,但是还需要注意其他方面的挑战和影响因素。
易保全是国内率先将区块链技术进行电子数据固化存证,并被司法机关认可的电子数据存证保全机构,从2013年就开始致力于区块链的技术研发与创新应用,创新“区块链+司法+应用”模式,打造4大可信区块链基础应用和联盟区块链“保全链开放平台”。
运用区块链、数字签名、时间戳、加密算法、共识算法等技术,从技术防护、管理运行和应用实践上,牢筑数据安全底座,让数据存证和交互更安全。
易保全对接国内多家权威CA机构,让平台与CA系统直连,为用户提供“可信数字身份服务”,利用“人脸识别、手机号、银行卡三要素”等多种身份认证方式,为每一个虚拟账号ID提供数字可信身份证明。
同时结合“签署密码、短信验证码、人脸识别”等多种意愿认证方式,确保组织及个人在系统内的所有操作都有真实身份支撑,都出于真实意愿,更好地避免了账号ID泄露、数据泄露、信息冒用等风险,保障每一份数据信息真实可信。
易保全自成立之初,就非常重视对用户数据安全性、隐私性的管理和保护,上链时,易保全采用时间戳、加密算法、共识算法等技术,保障数据的完整性和原始性;上链后,利用“保全链”,将电子数据从产生那刻起,即固化存证到各个司法节点,多方备份证据,确保普通的电子数据升级为司法认可的电子证据,并且可实时在权威机构进行官方查验,守护上链的每一份数据,让权益不受侵害。
易保全基于安全、合规、隐私等原则,在工信部、网信办等主管部门的严格监管下,为用户提供符合法律法规要求,且安全可信的区块链电子数据存证保全服务,可以与电子合同、版权保护、司法服务等领域深度融合,保障用户每一份电子数据全过程可记录、全流程可追溯、全数据可核验、全链路可信举证。
在资质认定上,易保全获得了公安部等保三级认证、ISO27001认证、ISO9001认证,四获国家网信办信息服务备案,并且是2018年工信部工业互联网试点示范项目(唯一区块链入选企业),区块链技术和资质备受国家认可。
关于区块链安全保护协议书和区块链技术安全框架的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
评论