区块链作为分布式系统的简单介绍

快讯指南 今日快讯 2023-01-10 140 0

今天给大家聊到了区块链作为分布式系统,以及相关的内容,在此希望可以让网友有所了解,最后记得收藏本站。

区块链是什么?如果技术上不懂区块链,操作上会有影响吗?

区块链是分布式系统数据储存、点对点通信、共识机制、数据加密等电子信息技术区块链作为分布式系统的新式应用模式。其本质就是分布式系统数据信息,随着所带来的结论便去“区块链技术”。区块链应用能够用于生活当中的许多情景,下面我们就来看看区块链应用的分析吧区块链作为分布式系统

技术性是把双刃剑。如同核技术是一种物理技术一样,区块链技术在技术方面来上谈,区块链是一种底层技术。核技术能够作为核弹,还可以作为核发电,一样,数字货币能够作为产业链和生活因素的管理方法,有可能会促使社会发展更持久,也有可能被恶人运用为最便捷的犯罪手段。

离去应用方面谈技术价值全是搅浑水,做为底层技术的区块链技术有之应用的层面和平谈判法。现阶段,有的人在商业运营模式有的人在硬件配置上讨论区块链技术,有的人则在权力分配的内容上讨论区块链技术。市场中慢慢清楚的是,区块链技术被用来技术性组成和商业运营模式设计,从硬件设备到系统到商业运营模式到金融的设计等诸多方面。但不是每一个区块链技术都可以发币,并不是每一个区块链技术都应发币。

技术性区块链技术,运用不一定,区块链的技术是区块链技术,但在顶层应用上能够区块链技术,也可以不用区块链技术。假如应用到不可以区块链技术的事、产业和项目上,那就不是区块链技术的;倘若用以能够大家普遍参加,具有公平管理权限的事上,那么就可以区块链技术。

包含区块链技术里的币,倘若我国做法定数字货币,区块链技术的币是可以去中心化。适用BTC运作的区块链是区块链技术的,可是联盟链一般由一个和好几个公司做为核心控制同盟,这又成了去中心化。

分布式系统架构与区块链的关系

区块链开源项目?现在是一个科技驱动金融发展的时代,科技的驱动因素已经从最早的互联网信息发展到近年的大数据、云计算、移动互联网。但是,技术的创新是永无止境的,区块链作为科技驱动力量已经呈现蓬勃的发展趋势。

在区块链出现之前,金融流通被紧紧地限制在国境线内。大多数人仅仅跟在自己生活区域内设有分行的少数几家银行机构产生金融关系。一个人要付出极大的努力和成本才能翻越国境,在国外开设银行账户——他这么做的原因有可能是国外税费低,或者国外的投资机会更多。但是,对一个普通人来说,开设国外银行账户成本很高,更重要的是,他可能压根就不知道可以开设国外银行账户这件事本身。

在未来,世界上任何地方的任何人都可以轻松获取到任何金融机构提供的金融产品和服务。人们不再依靠传统的银行或者中介机构来进行经济活动,取而代之的,是一个基于区块链技术的通用交换媒介。在未来,世界上任何地方的任何人,通过口袋里的一个手持设备,就可以进行点对点的汇款操作。

在区块链出现之前,创造新的金融产品或公司的限制很多。接收、管理和分发大量现金既困难又昂贵,并且需要专门的人才,大量的雇员,以及和现有的大型金融机构的良好业务关系。

在未来,接收和分发大量现金或者管理大量转账的成本将大大降低,整个过程几乎可以全部由程序自动控制。金融领域的创业门槛也将大大降低,这也使得大量金融公司不断涌现,并持续参与到原本只有屈指可数的金融机构所控制的金融产业中来,与原有的这些巨头展开竞争。

布比区块链简介

布比区块链自成立以来一直专注于区块链技术与产品的研发与创新,拥有多项核心技术,并在多个方面取得了实质性的创新,形成多项核心技术成果,例如:可数学证明的分布式共识技术、快速的大规模账本存取技术、支持业务形态扩展的多链总账技术、异构区块链间的互联技术等。4月25日,“格格积分”将积分系统引入区块链概念,多方联合开放,积分发行及兑换,促进积分流通。各合作机构可共同参与交易验证、账本存储、实时结算;企业积分发行方的第三方支付平台,使积分进出更灵活。布比开发了自有的区块链基础服务平台,已在股权、供应链、积分、信用等领域开展应用。布比一直致力于以去(多)中心信任为核心,构建开放式价值流通网络,让数字资产自由流动起来。

区块链技术 矿工?将区块链技术与因特网相提并论并不是百分百贴切,但这是一个有助于理解区块链技术的很好的角度。我们看到,所有涉及到把信息从 A 点转移到 B 点的产业都被因特网技术改变了。而区块链技术,尽管争议和质疑不断,但其很有可能对所有涉及财产转移的产业产生巨大影响。如果你的业务需要用到财产转移服务,你多半需要为这种服务付费,那么区块链技术很有可能大大削减你的这部分成本,并有望扩大可能的业务模型的适用边界。而如果你是金融财产转移服务的提供商,那么也许你应该给你的 CTO 打个电话了。

区块链开源项目?区块链技术 矿工?

很多人相信,基于区块链技术,我们可以创造出比货币、股票、积分这类已有事物更复杂的新东西。比如,我们可以写出能够独立控制货币、股票和积分的软件,这类软件运行起来就像独立的经济实体一样。它们“栖身”于区块链之上,它们的功能不再局限于发送,接收和储存财产,事实上它具体有什么功能取决于你代码是怎么写的。它们甚至可以自主地对外提供有偿服务,无论面向的服务对象是人还是其他软件。

区块链是一个环环相扣的什么计算系统

区块链是一个环环相扣的什么计算系统

区块链是一个环环相扣的什么计算系统,区块链是一个环环相扣的分布式计算系统,区块链是一个环环相扣的什么计算系统,区块链技术利用的是“块链式数据结构”来验证与存储数据的

区块链是一个环环相扣的什么计算系统1

区块链是一个环环相扣的什么计算系统

区块链是一个环环相扣的分布式计算系统;从应用视角来看,区块链是一个分布式的共享账本和数据库,具有去中心化、不可篡改、全程留痕、可以追溯、集体维护、公开透明等特点。

本文操作环境:windows7系统、Dell G3电脑。

区块链是一个环环相扣的分布式计算系统。

什么是区块链?

从科技层面来看,区块链涉及数学、密码学、互联网和计算机编程等很多科学技术问题。从应用视角来看,简单来说,区块链是一个分布式的共享账本和数据库,具有去中心化、不可篡改、全程留痕、可以追溯、集体维护、公开透明等特点。这些特点保证了区块链的“诚实”与“透明”,为区块链创造信任奠定基础。而区块链丰富的应用场景,基本上都基于区块链能够解决信息不对称问题,实现多个主体之间的协作信任与一致行动。

区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链(Blockchain),是比特币的一个重要概念,它本质上是一个去中心化的数据库,同时作为比特币的底层技术,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块 。

比特币白皮书英文原版 其实并未出现 blockchain 一词,而是使用的 chain of blocks。最早的比特币白皮书中文翻译版 [9] 中,将 chain of blocks 翻译成了区块链。这是“区块链”这一中文词最早的出现时间。

国家互联网信息办公室2019年1月10日发布《区块链信息服务管理规定》,自2019年2月15日起施行 。

作为核心技术自主创新的重要突破口,区块链的安全风险问题被视为当前制约行业健康发展的一大短板,频频发生的安全事件为业界敲响警钟。拥抱区块链,需要加快探索建立适应区块链技术机制的安全保障体系。

类型

公有区块链

公有区块链(Public Block Chains)是指:世界上任何个体或者团体都可以发送交易,且交易能够获得该区块链的有效确认,任何人都可以参与其共识过程。公有区块链是最早的区块链,也是应用最广泛的区块链,各大bitcoins系列的虚拟数字货币均基于公有区块链,世界上有且仅有一条该币种对应的区块链。

联合(行业)区块链

行业区块链(Consortium Block Chains):由某个群体内部指定多个预选的节点为记账人,每个块的生成由所有的预选节点共同决定(预选节点参与共识过程),其他接入节点可以参与交易,但不过问记账过程(本质上还是托管记账,只是变成分布式记账,预选节点的多少,如何决定每个块的记账者成为该区块链的主要风险点),其他任何人可以通过该区块链开放的API进行限定查询 。

私有区块链

私有区块链(Private Block Chains):仅仅使用区块链的总账技术进行记账,可以是一个公司,也可以是个人,独享该区块链的写入权限,本链与其他的分布式存储方案没有太大区别。传统金融都是想实验尝试私有区块链,而公链的应用例如bitcoin已经工业化,私链的应用产品还在摸索当中 。

特征

去中心化。区块链技术不依赖额外的第三方管理机构或硬件设施,没有中心管制,除了自成一体的区块链本身,通过分布式核算和存储,各个节点实现了信息自我验证、传递和管理。去中心化是区块链最突出最本质的特征。

开放性。区块链技术基础是开源的,除了交易各方的'私有信息被加密外,区块链的数据对所有人开放,任何人都可以通过公开的接口查询区块链数据和开发相关应用,因此整个系统信息高度透明。

独立性。基于协商一致的规范和协议(类似比特币采用的哈希算法等各种数学算法),整个区块链系统不依赖其他第三方,所有节点能够在系统内自动安全地验证、交换数据,不需要任何人为的干预。

安全性。只要不能掌控全部数据节点的51%,就无法肆意操控修改网络数据,这使区块链本身变得相对安全,避免了主观人为的数据变更。

匿名性。除非有法律规范要求,单从技术上来讲,各区块节点的身份信息不需要公开或验证,信息传递可以匿名进行 。

区块链是一个环环相扣的什么计算系统2

区块链作用

1. 区块链中的数据存储:块链式数据结构

在数据存储方面,区块链技术利用的是“块链式数据结构”来验证与存储数据的。块链式结构是什么意思呢?我们可以把它想象成铁链子,每一环我们可以看作是一个区块,很多环扣在一起就形成了区块链。

和普通存储数据的不同之处在于,在区块链上,后一个区块里的数据是包含前一个区块里的数据的。

2. 区块链中的数据更新:分布式节点共识算法

在数据更新方面,区块链技术是利用“分布式节点共识算法”来生成和更新数据。

每生成新的区块(也就是更新数据的时候),都需要通过一种算法获得全网 51% 以上节点的认可才能构成新的区块,说白了就是投票,超过半数人同意就可以生成,这就使得区块链上的数据不容篡改。

这一点我们可以把区块链理解成一个人人可以记账的账本,那么共识算法就是大家讨论、投票产生的、一致赞同的记账办法。

3. 区块链中的数据维护:密码学

区块链利用密码学的方式来保证数据传输和访问的安全,其所应用的密码学原理主要有哈希算法、Merkle 哈希树、椭圆曲线算法、Base58 等。这些原理,其实呢,都是通过一系列复杂的运算以及换算,来保证区块链上数据安全。

4. 区块链中的数据操作:智能合约

智能合约,是由计算机程序定义并自动执行的承诺协议,说白了,就是用代码执行的一套交易准则。

好比你在自动零售机买可乐,点击购买按键,付款后会自动掉出一瓶可乐给你。智能合约的突出优势就是,很大程度上避免了由信任产生的一系列问题。

二、区块链的作用

从区块链的定义中,不难看出它的一大特征就是可信任,最重要的是它还具有的去中心化、不可篡改、可追溯、匿名性等特点。

这些特点决定了它能够应用到许多行业,解决这些行业的痛点,赋能实体经济,这才是区块链逐渐被认可的原因。

据中国经济网报道,国务院发展研究中心信息中心研究员李广乾表示,“中国区块链的应用已从金融领域延伸到实体领域,电子信息存证、版权管理和交易、产品溯源、数字资产交易、物联网、智能制造、供应链管理等领域。”区块链技术已开始与实体经济产业深度融合,形成一批“产业区块链”项目,迎来产业区块链“百花齐放”的大时代。

接下来我们举几个区块链应用的领域,帮助大家理解区块链在我们生活中的作用。

1、 商品溯源

在我国,电商巨头京东,以及阿里旗下的蚂蚁金服,在区块链商品溯源方面都有一定的落地。电商企业通过开放区块链服务平台,帮助企业部署商品防伪追溯,已广泛应用于奶粉、保健品、大米等产品。2018 年“双 11”,通过区块链实现了来自上百个国家和地区的超过 1.5 亿件商品的溯源。

2 、 电子政务

基于区块链技术,能够解决传统电子政务面临的痛点,将政府、金融、监管等机构加入到区块链生态系统中,实现数据的共享。基于区块链的可追溯性,能够保证数据安全不被篡改;同时,由于在区块链系统中,维护数据安全的是各个节点,这样一来,政府事务便更加公开透明,便于监督。

根据链塔智库的报告,目前我国共有 17 项区块链电子政务应用,分别涉及七大细分场景:政府审计、数字身份、数据共享、涉公监管、电子票据、电子存证、出口监督等:

3、 电子发票

区块链电子票据已经成为区块链技术应用案例最多的应用场景。

去年 8 月 10 号,“全球第一张区块链电子发票”在深圳落地,腾讯金融科技为底层技术提供方。一年以来,深圳开出的区块链电子发票已有 800 万张,5300 多家企业或机构开通了区块链发票。

这些企业或机构涵盖的范围非常广泛,包括银行、地铁、出租车、金融保险、零售、地产、旅游、酒店餐饮等领域。人们只需要携带手机、依据手机上的支付记录,就可以实现随时开具区块链发票。

4. 供应链金融

金融的核心是“信用”,无论是贷款也好,还是融资也好,都离不开“信用”。区块链提供的“去中心化”思想正是解决信任问题的最合适的技术。分布式存储模式,能够推动商业银行、供应链核心企业等方面的信用信息共享,为企业和银行提供高效便捷的信息传递渠道。

三、区块链新浪潮开启,人才缺口大

我们可以发现,区块链正在渗透到我们的日常生活之中。近几年,我们看到全球很多高校也已经开设了区块链相关的课程,区块链学习和教育已经是大势所趋,这也正反映了当前市场对区块链人才的需求。

区块链分布式应用是什么?

分布式应用程序是主要存储在云计算平台上并同时在多个系统上运行的软件应用程序。这些系统在相同的网络上运行并相互通信区块链作为分布式系统,以完成特定的任务或命令。与分布式应用程序(ĐApp)相比区块链作为分布式系统,传统应用程序需要一个系统才能完成分配的任务。

通过在区块链网络上的各个节点之间存储信息块,一个系统的故障不会使区块链破产。当计算机或系统出现故障时,其区块链作为分布式系统他系统将充当备份并保持运行状态,而与停机的系统无关。一旦所有活动节点都收到并确认交易有效,该区块(即交易)将被添加到链(即总账)中以供公众访问。即使一个或两个节点退出网络,所有节点仍可以保持正常运行的能力,可确保用户不断以不间断且及时的方式记录和确认其交易。

链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

三. 区块链系统的核心之一-分布式共识机制

        拜占庭将军问题(Byzantine Generals Problem),是由莱斯利·兰波特在其同名论文中提出的分布式对等网络通信容错问题。

        在分布式计算中,不同的计算机通过通讯交换信息达成共识而按照同一套协作策略行动。但有时候,系统中的成员计算机可能出错而发送错误的信息,用于传递信息的通讯网络也可能导致信息损坏,使得网络中不同的成员关于全体协作的策略得出不同结论,从而破坏系统一致性。这个难题被称为“拜占庭容错”,或者“两军问题”。

        拜占庭假设是对现实世界的模型化。拜占庭将军问题被认为是容错性问题中最难的问题类型之一。拜占庭容错协议要求能够解决由于硬件错误、网络拥塞或断开以及遭到恶意攻击,其他计算机和网络可能出现不可预料的行为而带来的各种问题。并且拜占庭容错协议还要满足所要解决的问题要求的规范。

        在拜占庭时代有一个墙高壁厚的城邦——拜占庭,高墙之内存放在世人无法想象多的财富。拜占庭被其他10个城邦所环绕,这10个城邦也很富饶,但和拜占庭相比就有天壤之别了。

        拜占庭的十个邻居都觊觎它的财富,并希望侵略并占领它。但是,拜占庭的防御非常强大,任何单个城邦的入侵行动都会失败,而入侵者的军队也会被歼灭,使得该城邦自身遭到其他互相觊觎对方的九个城邦的入侵和劫掠。

        拜占庭的防御很强,十个城邦中要有一半以上同时进攻才能攻破它。也就是说,如果有六个或者以上的相邻城邦一起进攻,他们就会成功并获得拜占庭的财富。然而,如果其中有一个或者更多城邦背叛了其他城邦,答应一起入侵但在其他城邦进攻的时候又不干了,也就导致只有五支或者更少的城邦的军队在同时进攻,那么所有的进攻城邦的军队都会被歼灭,并随后被其他的(包括背叛他们的那(几)个)城邦所入侵和劫掠。

        这是一个由许多不互相信任的城邦构成的一个网络。城邦们必须一起努力以完成共同的使命。而且,各个城邦之间通讯和协调的唯一途径是通过信使骑马在城邦之间传递信息。城邦的决策者们无法聚集在一个地方开个会(所有的城邦的决策者都不互相信任自己的安全会在自己的城堡或者军队范围之外能够得到保障)。

        城邦的决策者可以在任意时间以任意频率派出任意数量的信使到任意的对方。每条信息都包含如下的内容:“我城邦将在某一天的某个时间发动进攻,你城邦愿意加入吗?”。如果收信城邦同意了,该城邦就会在原信上附上一份签名了的或盖了图章的(以就是验证了的)回应然送回发信城邦。然后,再把新合并了的信息的拷贝一一发送给其他八个城邦,要求他们也如此这样做。最后的目标是,通过在原始信息链上盖上他们所有十个城邦的决策者的图章,让他们在时间上达成共识。最后的结果是,会有一个盖有十个同意同一时间发动进攻的图章信息包,和一些被抛弃了的包含部分但不是全部图章的信息包。

        在这个过程中首先出现了第一个问题,就是如果每个城邦向其他九个城邦派出一名信使,那么就是十个城邦每个派出了九名信使,也就是在任何一个时间又总计90次的传输,并且每个城市分别收到九个信息,可能每一封都写着不同的进攻时间。

        在这个过程中还有第二个问题,就是部分城邦会答应超过一个的攻击时间,故意背叛进攻发起人,所以他们将重新广播超过一条(甚至许许多多条)的信息包,由此产生许多甚至无数的足以淹没一切的杂音。

        有了以上两个问题,整个网络系统可能迅速变质,并演变成不可信的信息和攻击时间相互矛盾的纠结体。

         拜占庭假设是对现实网络世界的一种模型化。在现实网络世界中由于硬件错误、网络拥塞或断开以及遭到恶意攻击,网络可能出现许许多多不可预料的行为。拜占庭容错协议必须处理这些失效,并且还要使这些协议满足所要解决的问题所要求的规范。

        对于拜占庭将军问题中本聪的区块链给出了比较圆满的解决方案。也就是比较圆满的解决了上述的两个问题。

        拜占庭将军问题的第一个问题从本质上来讲就是时间和空间的障碍导致信息的不准确和不及时。

        区块链对于第一个问题的解决方案是利用分布式存储技术和比特流技术(BT技术,一种新型的点对点传输技术,具有节点同时作为客户端和服务器端和没有中心服务器等特点),将整个网络系统内的所有交易信息汇总为一个统一的,分布式存储的,近乎实时同步更新的电子总账。统一的分布式共同账本就解决了空间障碍问题;而近乎同步进行的,实时的,持续的对所有账本备份的更新、对账则解决了时间障碍问题。

        这个过程较具体一点的描述大概是将区块链系统内所有的交易活动的记录数据统一于一种标准化的总帐上;区块链系统的每一个节点都会保存一份总帐的备份;所有总帐的备份都是在实时的,持续的更新、对账、以及同步着。区块链系统的每一个节点能在这本总帐里记上添加记录;每一笔新添加的记录都会实时的广播到区块链系统内;所以在每一个节点上的每一份总帐的备份都是几乎同时更新的,并且所有的总帐的备份保持着同步。

        拜占庭将军问题的第二个问题从本质上来讲就是关于信息过量问题和信息干扰问题。信息过量和信息干扰问题导致决策延迟,甚至决策系统崩溃而无法决策。

        区块链对于第二个问题的解决方案是区块链系统的任何一个节点在发送每一笔新添加的记录时需要附带一条额外的信息。对区块链系统的任何一个节点来说这条额外的信息的获得都是有成本的,并且只能有一个节点可以获得。这样就解决了区块链系统的任何一个节点新添加额外信息时的信息多且乱而无法达成一致的问题。在这里,区块链系统的任何一个节点获得那条附带的额外的信息的过程就是著名的工作量证明机制。

        共识机制主要解决区块链系统的数据如何记录和如何保存的问题。工作量证明机制就是要求区块链系统的节点通过做一定难度的工作得出一个结果的过程。

        区块链系统中某节点生成了一笔新的交易记录,并且该节点将这笔新的交易记录向全网广播。全网各个节点收到这个交易记录并与其他所有准备打包进区块的交易记录共同组成交易记录列表。在列表内先对所有交易进行两两的哈希计算;再对以获得的哈希值进行哈希计算获得Merkle树和Merkle树的根值;把Merkle树的根值及其他相关字段组装成区块头。

        各个节点将区块头的80字节数据加上一个不停的变更的区块头随机数一起进行不停的哈希运算(实际上这是一个双重哈希运算);不停的将哈希运算结果值与当前网络的目标值做对比,直到哈希运算结果值小于目标值,就获得了符合要求的哈希值,工作量证明也就完成了。

         分布式的区块链系统是一个动态变化的系统(硬件的运算速度的增长,节点参与网络的程度的变化)。系统的不断变化必然带来系统的算力的不断变化。而算力的变化又会导致通过消耗算力(工作)来获得符合要求的哈希值的速度的不同。最终的结果会是区块链的增长速度会有巨大的不同。这是一个很大的问题。为了解决这个问题,区块链系统自动根据算力的变化对工作难度进行调整。也就是采用移动平均目标的方法来确定,难度控制为每小时生成区块的速度为某一个预定的平均数。

        在区块链系统中一个符合要求的哈希值是由N个前导零构成,零的个数取决于网络的难度值。为了使区块的形成时间控制在大约十分钟左右,区块链系统采用了固定工作难度的难度算法。难度值每2016个区块调整一次零的个数。

        新的难度值是根据前2015个区块(理论上应该是2016个区块,由于当初程序编写时的失误造成了用2015而不是2016)的出块时间来计算。

        难度 = 目标值 * 前2015个区块生成所用的时间 / 1209600 (两周的秒钟数)

        这样通过规定的算法,区块链系统就保证所有节点计算出的难度值都一致,区块的形成时间大约一致在十分钟左右。

      (1)结果不可控制。其依赖机器进行哈希函数的运算来获得结果;计算结果是一个随机数;没有人能直接控制计算的结果。

      (2)计算具有对称性。就是结果的获得和结果的验收需要的工作量是不同的。计算出结果所需要的工作量远远大于验收结果所需要的工作量。

      (3)计算的难度自动控制。为了使区块的形成时间控制在大约十分钟左右,区块链系统自动控制了每一个符合要求的哈希获得为大约在十分钟左右。

         第一,方法简单易行。

        第二,系统达成共识容易,节点间不需要太多的信息交换。

        第三,系统比较牢固可靠,任何破坏系统的企图都需要投入大到得不偿失的成本。

        第一,消耗大量的算力,也就是浪费能源和其他资源。

        第二,区块的确认时间比较长,并且难以缩短。

        第三,新创立的区块链非常容易受到算力攻击。

        第四,容易产生区块链分叉,稳定的区块链需要多个确认,并且这种状况可能不断持续下去。

        第五,算力的逐渐集中导致与去中心化的系统设计基础的冲突日益明显。

        权益证明机制是一种工作量证明机制的替代方法,试图解决工作量计算浪费的问题.目前其成功的应用是点点币区块链系统。

        权益证明不要求区块链系统的节点完成一定数量的计算工作,而是要求区块链系统的节点对某些数量的钱展示所有权。

        权益证明机制首先应用于点点币区块链系统中。

        点点币区块链系统的区块生成时,节点需要构造一个“钱币权益”交易,即把自己的一些钱币和预先设定的奖励发给自己。进行哈希计算时,哈希值的计算只同交易输入、一些附加的固定数据以及当前时间(是一个表示自1970年1月1日距离当前时刻的秒数的正数)有关。然后,根据类似工作量证明的要求来检查这个哈希值是否正确。

        点点币区块链系统的权益证明机制除了设定了哈希计算难度与交易输入的“币龄”成反比外,其与工作量证明机制非常类似。其中,币龄的定义为交易输入大小和它存在时间的乘积。权益证明机制中哈希值只和时间和固定的数据有关,因而没有办法通过多完成工作来快速获取它。

       每个点点币区块链系统的交易的输出都有一定的几率来产生有效的正比于币龄和交易货币数量的工作。

        第一,缩短了共识达成的时间。

        第二,不再需要大量消耗能源。

        第一,还是需要哈希计算。

        第二,所有的确认都只是一个概率上的表达,而不是一个确定性的事情,有可能受到其他攻击影响。

        授权股份证明机制类似于权益证明机制,是比特股BitShares采用的区块链公识算法。授权股份证明机制是民主选举和轮流执政相结合方式来确定区块的产生。

        授权股份证明机制是先由节点选举若干代理人,由代理人验证和记账。其他方面和权益证明机制相似。

        每个节点按其持股比例拥有相应的影响力,51%节点投票的结果将是不可逆且有约束力的。为达到及时而高效的方法达到51%批准的目标。每个节点可以将其投票权授予一名节点。获票数最多的前100位节点按既定时间表轮流产生区块。每名节点分配到一个时间段来生产区块。

        所有的节点将收到等同于一个平均水平的区块所含交易费的10%作为报酬。

         第一,大幅缩小参与验证和记账节点的数量,

         第二,可以快速实现共识验证。

         主要缺点就是仍然无法摆脱对代币的依赖。

        在分布式计算上,不同的计算机透过讯息交换,尝试达成共识;但有时候,系统上协调计算或成员计算机可能因系统错误并交换错的讯息,导致影响最终的系统一致性。

        拜占庭将军问题就根据错误计算机的数量,寻找可能的解决办法,这无法找到一个绝对的答案,但只可以用来验证一个机制的有效程度。

        而拜占庭问题的可能解决方法为:

        在 N ≥ 3F + 1 的情况下一致性是可能解决。其中,N为计算机总数,F为有问题计算机总数。信息在计算机间互相交换后,各计算机列出所有得到的信息,以大多数的结果作为解决办法。

         第一,系统运转可以摆脱对代币的依赖,共识各节点由业务的参与方或者监管方组成,安全性与稳定性由业务相关方保证。

         第二,共识的时延大约在2到5秒钟。

         第三,共识效率高,可满足高频交易量的需求。

         第一,当有1/3或以上记账人停止工作后,系统将无法提供服务;

         第二,当有1/3或以上记账人联合作恶,可能系统会出现会留下密码学证据的分叉。

        小蚁改良了实用拜占庭容错机制。该机制是由权益来选出记账人,然后记账人之间通过拜占庭容错算法来达成共识。

        此算法在PBFT基础上进行了以下改进:

        第一,将C/S架构的请求响应模式,改进为适合P2P网络的对等节点模式;

        第二,将静态的共识参与节点改进为可动态进入、退出的动态共识参与节点;

        第三,为共识参与节点的产生设计了一套基于持有权益比例的投票机制,通过投票决定共识参与节点(记账节点);

        第四,在区块链中引入数字证书,解决了投票中对记账节点真实身份的认证问题。

        第一,专业化的记账人;

        第二,可以容忍任何类型的错误;

        第三,记账由多人协同完成,每一个区块都有最终性,不会分产生区块链分叉;

        第四,算法的可靠性有严格的数学证明来保证;

        第一,当有1/3或以上记账人停止工作后,区块链系统将无法提供服务;

        第二,当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使区块链系统出现分叉,但是会留下密码学证据;

         瑞波共识机制是全体节点选取出特殊节点组成特殊节点列表,由特殊节点列表内的节点达成共识。

         初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。波共识机制将股东们与其投票权隔开,并因此比其他系统更中心化。

        瑞波共识机制参与共识形成的只有特殊节点,大大的减少了共识形成的时间。在实践中,瑞波区块链系统达成共识需要3-6秒钟,远远快于比特币区块链系统的10分钟。同时瑞波区块链系统对并发交易的处理达到每秒数万笔,而比特币区块链系统只有每秒7笔。

瑞波共识机制处理节点意见分歧的方式也是不同的。瑞波的信任节点对于新区块的创造进行协商的时间是区块链更新前。先协商,达成共识后再对区块链进行更新。

由于瑞波共识机制的共识是由特殊节点达成的,普通节点并不需要维护一个完整的历史账本。各个节点可以根据自己的业务需要选择同步同步完整的历史账本或者任意最近几步的账本。这也意味着对存储空间和网络流量需求的减少。

瑞波共识机制取消了挖坑的发行货币机制,采用了原生货币(1000亿枚)的方式发币,从而大量的避免了挖矿的天量能耗。

区块链作为分布式系统的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、区块链作为分布式系统的信息别忘了在本站进行查找喔。

评论